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Optimization of the TEM Feed Structure for
Four-Arm Reflector Impulse Radiating Antennas

J. Scott Tyo, Member, IEEE

Abstract—This paper considers the optimization of the feed arm
geometry of four-arm crossed-coplanar plate impulse radiating an-
tennas (IRAs) when the angular position and extent of the arms are
taken as free parameters. Previously, optimization of this class of
antenna considered only the symmetric case where the two pairs of
crossed feed arms were perpendicular to each other. Comparison is
made using the prompt aperture efficiency, and the results indicate
that the efficiency of four-arm IRAs can be increased from 25%
for the perpendicularly crossed arms to 35% for the optimum
configuration. In addition to the optimization, the feed impedance
of coplanar feeds is presented for general values of feed arm angle
and plate width, and the optimum feed impedance is computed for
each feed arm angle. The results can be used to design the optimal
four-arm IRA with an arbitrary specified input impedance.

Index Terms—Reflector antennas, ultra-wide-band (UWB) an-
tennas.

I. INTRODUCTION

I MPULSE radiating antennas (IRAs) are members of a
class of antennas that are designed for the radiation of

ultra-wide-band (UWB) electromagnetic impulses. These
antennas are perhaps better characterized as dispersionless
high-band ratio antennas, where band ratio is defined as
the ratio of the upper and lower 3-dB rolloff frequencies of
the radiated pulse. Current systems can achieve band ratios
approaching 100 (two decades of instantaneous bandwidth)
[1]. Through a combination of a nondispersive transverse
electromagnetic (TEM) feed structure and a focused aperture,
IRAs act like differentiators for the early time portion of the
applied voltage waveform. When excited by a fast-rising step,
the field radiated form the IRA on boresight closely resembles a
narrow impulse. While the nature of the focusing optic and the
feed structure affect the features of the prepulse and postpulse
portions of the waveform, the largest part of the radiated signal
for a general IRA is [2]–[6]

(1)

where is the applied voltage waveform, is the peak of
the applied voltage waveform, and the surface integral is over
the transverse components of the TEM mode in the aperture de-
fined by . The prompt radiated field can also be described in
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terms of the geometric impedance factor of the TEM transmis-
sion line feed

(2)

and the aperture height [7]

(3)

The aperture height is a convenient parameter because both the
transmitted and received peak waveforms can be expressed in
terms of as [3]

(4)

where and are the magnitudes of the principal com-
ponent of the radiated and incident field, respectively.

A. Performance Metrics

A number of metrics have been proposed to compare the
performance of antennas operating in the time domain [3],
[8]–[10]. The difficulty in comparing performance arises from
the nonunique choice of a norm for time-domain comparisons.
The three metrics discussed below are the power normalized
gain and voltage normalized gain introduced by Farr and
Baum [3], [9] and the prompt aperture efficiency introduced by
Buchenaueret al. [10], all of which make comparisons based
on the peak radiated power or field.

The power normalized gain is defined as [9]

(5)

and is useful for comparing the performance of antennas under
constant input power conditions. When the input power is held
constant ( constant), the response of an IRA is propor-
tional to . The voltage normalized gain is defined as [3], [9]

(6)

and is used for comparing the performance of antennas under
constant input voltage conditions, i.e, whenis held constant.
For high-power applications, spark-gap sources have been de-
veloped that can provide a constant input voltage to an IRA,
regardless of the feed impedance. In these cases,is a useful
metric. As shown in [9] and found below, is often maxi-
mized by allowing the feed impedance to go to zero, an imprac-
tical scenario that requires infinite input power and results in
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infinite fields in the aperture and infinite currents on the elec-
trodes. In these situations, other considerations such as source
lifetime, maximum fields on the antenna and current flow limit
the allowed values of (and hence ).

The power normalized gain has units of length, and care
must be taken when using it in an optimization problem in order
to make a fair comparison between antennas of different sizes,
as can be increased simply by increasing the physical size
of the antenna. is most useful when additional constraints
are present that limit the dimensions of the antenna. For ex-
ample, when optimizing the feed impedance of lens IRAs con-
strained to fit within a circular aperture of fixed radius, Farr and
Baum [4], [11] used to conclude that low-impedance horns
(with large width to height ratios) were undesirable. This result
is dominated by the fact that the physical height and aperture
area of low-impedance horns that fit inside a circle of fixed ra-
dius goes to zero as .

The dimensionless quantity of prompt aperture efficiency is
defined as [10]

(7)

where is the area of the aperture defined byand is the
principle component of the electric field in the aperture, taken
without loss of generality as being parallel to the-axis. Equa-
tion (7) is obtained by comparing the peak radiated power den-
sity boresight from an antenna to that from an ideal antenna with
a uniformly illuminated aperture, the same input power, and the
same aperture area. Because of the area normalization in (7),
aperture efficiency is the preferred metric for comparing the in-
herent performance of classes antennas regardless of physical
size. Aperture efficiency and power normalized gain are related
by

(8)

Regardless of the metric, it is clear from (4)–(7) that the op-
timum antenna for a fixed input impedance (fixed) and aper-
ture size is the one that maximizes the aperture height.

B. Self-Reciprocal Apertures

An important class of IRAs is the set of antennas fed by
self-reciprocal feed structures. Self-reciprocal apertures are dis-
cussed in [12] and have feed geometries that are unaltered by
the reciprocation operation , where

is the position vector in the aperture plane andis the
radius of the circle of symmetry. The coplanar feed IRAs dis-
cussed in this paper are examples of self-reciprocal apertures,
as shown in Fig. 1. Self-reciprocal apertures have a number of
interesting properties, but the most important ones for this paper
are:

1) exactly half of the power on the transmission line propa-
gates outside the circle of symmetry;

2) the total charge on the feed arms inside and outside the
circle of symmetry are equal;

3) all contiguous points on the circle of symmetry that are
not occupied by conductor lie on a single field line.

Fig. 1. Schematic of the arbitrary crossed coplanar feeds. The feed arms
originate from the focal point of the paraboloidal reflector, and the plane of the
feed arm makes an angle� with the horizontal symmetry plane. Each pair
of feeds is taken to be coplanar, and the intersection point with the circle of
symmetry (after sterographic projection) satisfies the self-reciprocal condition
[1], [12]. Once the focal lengthf , diameterD, and� are specified and the
ratio b =b is chosen (equivalent to specifying feed impedance),� , � , and
� can be determined using the relations in the figure.

For the important class of self-reciprocal apertures, which are
typically confined to focusing the fields within the circle of sym-
metry, the aperture areais constant for all configurations, and

and are equivalent metrics. Aperture efficiency will be the
parameter used in this paper to optimize the feed configuration
in crossed coplanar fed IRAs, primarily because of its dimen-
sionless property and ready interpretation, but use of either
or produces identical results for this class of IRAs.

C. Reflector IRAs with Crossed Coplanar Feeds

One of the most common types of IRAs used is the reflector
IRA with two pairs of perpendicularly crossed, coplanar feeds
[1] ( in Fig. 1). Because of the symmetry of the system,
the field distribution, feed impedance, and aperture height of this
type of antenna can be calculated analytically [2]. While there
is no additional complexity associated with making a more gen-
eral IRA with feed arms that are not oriented at right angles, the
only analysis of crossed coplanar-fed IRAs whose arms make
an arbitrary angle with respect to the ground plane as shown
in Fig. 1 was performed by Baum [13] for the high-impedance
limit of wire-fed IRAs. In Section II, the TEM mode for the
arbitrary coplanar, four-arm structure is computed numerically
using the finite-element method. In Section III, the important
design parameters of feed impedance, aperture height, and aper-
ture efficiency are calculated. Section IV contains a discussion
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of the results and implications of optimizing various features of
the antenna. Conclusions are drawn in Section V.

II. COMPUTATION OF THETEM MODE DISTRIBUTION

It is well known that the field distribution of the TEM mode
on a multiconductor transmission line can be computed as the
gradient of a scalar potential that satisfies the Laplace equa-
tion [14]. For many classes of feeds, the potential can be cal-
culated using a combination of the stereographic projection and
conformal transformations [15]; however, for arbitrary geome-
tries, the conformal map may not exist in closed form. In this
paper, it is assumed that the stereographic projection has already
been carried out, i.e., the conically symmetric feed structure has
been transformed to a longitudinally symmetric structure, as dis-
cussed in [5]. The important properties of the stereographic pro-
jection for this class of antennas are summarized in Fig. 1 and
discussed in greater detail in [5].

The asymmetrically crossed coplanar feed structure depicted
in Fig. 1 can be described in terms of successive conformal map-
pings, but the Schwartz–Christoffel transformation integrals for
the asymmetric cases have not been performed an-
alytically. When the analytic form of the conformal transforma-
tion is not known, a numerical approximation can be obtained
by employing a Laplace equation solver such as the method of
moments or finite-element method (FEM). The properties of
self-reciprocal symmetry allow the computational domain to be
bounded, making the geometry depicted in Fig. 1 ideally suited
to analysis by the FEM. After numerical calculation of the fields,
the integrals in (1)–(7) can be evaluated directly or by casting
the aperture integral into one of the alternate contour integral
forms presented in [7].

The FEM requires a closed computational domain, so it is not
always straightforward to calculate open-mode problems using
FEM. The complex potential distribution on a TEM transmis-
sion line is an example of an open mode problem (because the
TEM mode exists everywhere in the plane transverse to propa-
gation), but the reflection symmetries at the and
planes and the reciprocation symmetry on the circle of radius
shown in Fig. 1 allow the geometry to be bounded by perfectly
electrically conducting (PEC) and perfectly magnet-
ically conducting (PMC) surfaces. The sym-
metry planes also allow the structure to be modeled by consid-
ering only one quadrant of the antenna.

The FEM was employed in this study using the Matlab (ver-
sion 5.3) Partial Differential Equations (PDE) Toolbox (version
1.0), which was designed to solve two-dimensional vector and
scalar differential equations using the FEM. The electrode was
positioned at an arbitrary position from the -axis and held at
constant electric potential. The PDE toolbox required the elec-
trode to have finite thickness, and past experience has shown
that when the ratio of plate thickness to the next smallest dimen-
sion (either separation or width) was less than 1:60, the field dis-
tribution was very close to the theoretical zero-thickness plate
result [10], [16]. The FEM mesh was composed of linear, tri-
angular elements and was generated automatically by the PDE
toolbox. After computation of a solution to the Laplace equa-

tion, the mesh was adaptively refined by subdividing elements
where the gradient varied most rapidly in order to better approx-
imate the local electric field near the plate edges.

A. Validation of Modeling Method

When , the two crossed pairs of coplanar feeds are
perpendicular to each other, and the presence of the second set
of electrodes does not alter the fields that are due to the first set
alone. For a single pair of electrodes, the complex potential is
given by the conformal transformation

(9)

where is a Jacobian elliptic function [17] and is the
parameter of the elliptic function. In (9),gives the electric po-
tential and gives the magnetic potential (or electric field lines).
The product of the short and long radii of the electrode is fixed
by the self-reciprocal symmetry condition to be , and
the parameter of the elliptic function is given as
[12]. The field distribution can be computed analytically by su-
perposing the fields given by (9) for the two sets of feed arms
taken one at a time [2], [3]. The feed impedance and aperture
heights of the 4-arm IRA are [9]

(10)

(11)

This case can be used as a validation tool for the FEM modeling
method. Furthermore, the performance of the adaptive mesh re-
finement described above can be evaluated, and a stopping cri-
terion can be established for the general case where the analytic
solution is not known.

The results of the numerical calculations of the feed
impedance for the case of are shown
in Fig. 2. The diagnostic quantity that was used for the stop-
ping condition in the following sections was the geometric
impedance factor . The difference between the calculated
value for and the theoretical value as a
function of iteration number is shown in Fig. 2(a), and the
number of elements as a function of iteration number is shown
in Fig. 2(b). The fractional change in the calculated is
shown as a function of iteration number in Fig. 2(c). As can
be seen from the figure, the model can get to within1% of
the theoretical value with a mesh size of5000 elements, a
number that was fairly typical for most geometries (highly
singular geometries where was close to 0 or 90 or when

is close to one or zero required more highly refined
meshes). Comparing the results presented in Fig. 2(a) and (c)
led to the development of the following stopping criteria for the
adaptive refinements: when three successive mesh refinements
had a fractional change of less than 0.003 in the geometric
impedance factor, the algorithm terminated. If the number of
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(a) (b) (c)

Fig. 2. Performance of the FEM modeling tool for the case of� = 45 andb =a = 0:5. The analytic solution for this case is known andf = 0:285.
(a) Absolute error in the computed value off as a function of iteration number. (b) Number of elements in FEM mesh. (c) Relative change in the computed value
of f as a function of iteration number. These data were used to develop the stopping criterion discussed in the text.

Fig. 3. Comparison of numerical computation of geometric impedance factor
to the theoretical value predicted by (10). The fit is very close except for the first
point (b =a = 0:02), where the error is 2.1%. For all other points, the error is
less that 0.5%.

elements in the mesh exceeded 7500, the adaptive refinement
was also stopped regardless of the fractionalchange in.

Fig. 3 presents a comparison of the computed and theoretical
values of for over the range of from 0.02
to 0.97. Theoretical values were obtained using (10). The com-
puted values were taken from calculations employing the auto-
matic stopping condition described above (not from the data that
went into Fig. 2). Except at the lowest impedance ,
the error between the calculated and analytic impedance values
was less than 0.5%. At the lowest impedance, the error was
2.1%. Fig. 4 presents a comparison between the computed and
analytic value for the aperture height. Analytic values were ob-
tained using (11). The error at the lowest impedance was 2.1%,
but for all other points the error was 1.2% or less.

Fig. 4. Comparison of numerically computed values of aperture height to the
theoretical values predicted by (11). The fit for aperture height is not as good as
for the impedance; however, the error is less than 1.5% for all points except for
the first (b =a = 0:02).

III. CALCULATION OF ANTENNA DESIGN PARAMETERS

Using the FEM method described in the previous section, the
feed impedance, aperture height, and aperture efficiency were
calculated at values of ranging from 3 to 87 and at values
of ranging from 0.02 to 0.97.

A. Feed Impedance

Fig. 5 presents the value of as a function of to achieve
popular values of the feed impedance. As expected,
as (limit as the spacing between the electrodes goes
to zero) and as (limit as the electrodes
approach infinitesimal wires). The family of curves in Fig. 5
has been fitted to a functional form as described and tabulated in
[18]. Appropriate values of for a particular feed impedance



TYO: OPTIMIZATION OF TEM FEED STRUCTURE 611

Fig. 5. Plate widths as a function of� to obtain popular values of feed impedance. To find the corresponding angular widths for the feed arms of an IRA, use
the relations in Fig. 1.

Fig. 6. Normalized aperture height as a function of feed arm angle� .

and feed arm angle can be obtained by interpolating between the
curves presented in Fig. 5.

B. Aperture Height

Fig. 6 presents the aperture height as a function offor pop-
ular values of the feed impedance. As ,
which is one-half of the mean charge separation for a four-wire
transmission line [7]. As . The family of curves
in Fig. 6 has been fit to a functional form and is tabulated in
[18], but once again accurate estimates can be obtained by in-
terpolation between the curves in Fig. 6.

C. Aperture Efficiency

Fig. 7 presents a surface plot of aperture efficiency as a func-
tion of and . It is clear from Fig. 7 that there is a partic-
ular pair of and that produces the maximum aperture

Fig. 7. Mesh plot of aperture efficiency as a function ofb =a and� . There is
a clear maximum at� = 70 andb =a = 0:84. The value off at this point
is 0.65 (247
 in free space).
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Fig. 8. Plots of aperture efficiency as a function of feed impedance (in free space). As� increases, the curves shift to the right. The graph shows that the optimum
feed impedance increases monotonically with� .

Fig. 9. Optimum aperture efficiency as a function of feed impedance. The peak
aperture efficiency is 35% atZ = 247 
. The optimum angle� for each
value ofZ can be obtained from Fig. 10 or (12).

efficiency. The maximum value is , and it occurs at
. Fig. 7 shows that as

and , as demonstrated in [10].

IV. DISCUSSION

The data presented in Figs. 5–7 provide all of the informa-
tion needed to design an antenna with a particular aperture effi-
ciency, feed impedance, or feed arm angle. However, if the
information contained in Figs. 5–7 is combined, curves of
versus can be plotted for distinct values of , as is done in
Fig. 8.

Analysis of Fig. 8 provides two interesting results. First, for
any particular value of feed impedance, there is a unique geom-
etry that provides the optimum aperture efficiency. The curves in

Fig. 10. Optimum feed impedance as a function of� . The staircased nature
of the data is due to similarities in the progression of the adaptive refinement
method and stopping strategies between similar geometries. The linear
regression was a slope fit only, as the line was constrained to pass thought the
origin. Note that the optimum angle for impedances of 100, 150, 200, and 250

 are approximately 30, 45 , 60 , and 75 , respectively.

Fig. 8 can be used as a design tool to select a particular feed ge-
ometry to match the impedance of an individual source. Second,
it is clear from the figure that as increases, the optimum
aperture efficiency occurs at higher and higher impedances. The
peak value of the aperture efficiency for eachis plotted in
Fig. 9, and the feed impedance corresponding to this peak is
plotted as a function of in Fig. 10. The relationship between
optimum feed impedance and appears to be linear, so the
data points were fit using a constrained least squares linear re-
gression (setting the intercept to zero). The equation for the line
in Fig. 10 is

(12)
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Fig. 11. Voltage normalized gain as a function of feed arm angle for popular values of feed impedance, assuming that the feed line is in free space. The lower the
feed impedance, the higherG , but this enhancement may be offset by increased feed blockage at lower impedances.

Fig. 12. Circular-conical TEM horn-fed lens IRA. The antenna depicted above is configured with a stripline extension to enhance the late-time response. The
90 section(� = 45 ) has been shown by Liu [20] to be the optimum geometry for self-reciprocal feed structures. The optimum configuration for the four-arm
IRA is that that most closely approximates the circular conical IRA.

assuming that the medium is free space. This linear relationship
between optimum feed impedance andwas unexpected, and
if closed-form expressions for the conformal mapping can be
obtained, they might provide some physical understanding of
the interaction among feed arm angle, extent of the electrodes,
and aperture efficiency. It is worth noting that (12) predicts an
optimum impedance of 307 for the case of when
the two pairs of crossed coplanar feeds are at the same location,
corresponding to the case of a single pair of coplanar feeds. This
geometry was optimized analytically by Farr and Baum in [9]
using the parameter . The optimum impedance was found
analytically to be 302 , a difference of less than 2% that is
attributable to the numerical techniques used in this study.

In this paper, the optimization was considered for the aperture
efficiency (or, equivalently, the power normalized gain of [9]).
However, for many UWB systems, the quantity that should be
maximized is the prompt radiated field, which scales like ,
or the voltage normalized gain of [9]. As mentioned in the
introduction and found in [9], the voltage normalized gain is
usually optimized by allowing . Allowing is
impractical for current-flow reasons (since current on the an-
tenna goes like ), and the wide feed arms needed to obtain
low impedances may be expected to significantly enhance feed
blockage [19]. For many high-power applications that are lim-

ited by dielectric breakdown, the cost of the system scales with
input voltage (not input power), so the importance of for
maximizing the radiated field should not be overlooked. The
value of (normalized to the aperture radius) is plotted as
a function of in Fig. 11 for several common values of feed
impedance.

The results reported here were for the four-arm IRA, but there
is nothing preventing a similar analysis of-arm IRAs. The op-
timum aperture efficiency for the two-arm IRA can be computed
using the results from [9] and is 27%. The optimum aperture
efficiency for the four-arm case considered here is 35%. Intu-
itively, the addition ofnonblockingfeed arms will continue to
optimize the aperture efficiency. This is true because additional
feeds cause the field distribution in the aperture to be more uni-
form, hence increasing aperture efficiency. It was shown in [10]
that % for all self-reciprocal antennas that focus the
circle of symmetry, and it was demonstrated in [20] that the cir-
cular conical feed structure depicted in Fig. 12 with
has the most uniform field distribution in the aperture. It can
therefore be concluded that the optimum four-arm IRA, with

, and , is the one that most
closely approximates the geometry depicted in Fig. 12. Further-
more, if only thepromptsignal is considered, the addition of
more nonblocking feed arms will make a better approximation
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to the geometry in Fig. 12, further improving the aperture effi-
ciency. However, the late-time field will be pulled down more
rapidly as more feed arms are added even in the absence of feed
blockage.

The analysis presented in this paper assumed no feed
blockage by the coplanar feed lines. This assumption cor-
responds to the geometric optics analysis that is typically
used for IRAs. The presence of large metallic plates in the
aperture might be expected to perturb the aperture distribution,
thereby reducing the aperture efficiency below that predicted
by the geometric optics analysis. Quantification of the effect of
aperture blockage in coplanar-plate fed IRAs is an issue that
merits further investigation.

V. CONCLUSION

The study described in this paper has provided three principle
results. First, the entire design space for reflector IRAs fed by
crossed coplanar feeds with reflection symmetry has been sam-
pled. Curves are presented in Figs. 5–9 that allow ready predic-
tion of feed impedance, aperture height, and aperture efficiency
as a function of the geometric parameters of the antenna. These
relationships provide more flexibility in IRA design than what
was possible using configurations with known analytic solutions
[9]. Second, the data presented in this paper allow the optimiza-
tion of the aperture efficiency for any value of the geomteric
properties. It has been shown that a distinct optimum exists for
any feed arm angle and that an absolute optimum configura-
tion exists at , and (247 in
free space). Finally, the results presented in Figs. 8 and 10 show
that for any specific value of feed impedance, there is a unique
optimum configuration that maximizes aperture efficiency. The
curves in those figures cover several common feed impedances,
including the 200- case used in many reflector IRAs. The feed
arm angle is linearly related to the desired impedance by (12).
This is important in that once the input impedance of the antenna
is specified, the antenna can be optimized without affecting up-
stream components of the system by selecting the appropriate
values of and presented in this paper.

The methods used in this report are general in that they
can be applied to any focused aperture system to calculate
feed impedance and aperture height (and hence any of the
performance metrics described above). While best suited to
the analysis of self-reciprocal apertures, iterative boundary
condition methods have been developed that allow computation
of open TEM modes [16], [10]. The method can be easily
modified to include the effects of aperture blockage in the eval-
uation of (3), allowing analysis of geometries for the feed arms
that are not coplanar plates, including circular-cross-sectioned
feed arms, curved plates, or other arbitrary configurations.
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